

Characterisation of European CO₂ storage

Evaluating the storage geomechanical stability

Valentina Volpi, Edy Forlin in collaboration with IFPEN, GEUS, IMPERIAL

SiteChar Closing Conference, 28 November 2013, IFPEN (France) – www.sitechar-co2.eu

Objectives

- Evaluation of storage complex integrity
 - threshold overpressure for caprock fracturing;
 - fault-related geomechanical risks;
 - seabed/topographic surface displacement evaluation;
 - potential migration pathways.
- Planning injection strategy to reduce induced overpressure
- Challenges
- Management of the lack of proper data
 - Uncertainty analysis / Best and worst scenarios;
- Strenghten the metodology
 - Fluid flow geomechanics coupling.

Workflow for geomechanical storage site charcterization

Southern Adriatic Sea site

Evaluation of the fracturing pressure

SiteChar Closing Conference, 28 November 2013, IFPEN (France) – www.sitechar-co2.eu

Analysis of geomechanical risks related to fault reactivation

Southern Adriatic Sea

Geomechanical modeling

- Analysis of fault-related geomechanical risks:
 - comparing the fault stress state to a damage criterion;
 - Mohr-Coulomb criteria.
- Sensitive analysis considering different scenarios:
 - in situ stress conditions;
 - hydrodynamic fault behavior;
 - petrophysical data.

SiteChar - Baroni et al., 2013

Analysis of geomechanical risks related to fault reactivation

Southern Adriatic Sea

Geomechanical simulation results

SiteChar – Baroni et al., 2013

SiteChar Closing Conference, 28 November 2013, IFPEN (France) – www.sitechar-co2.eu

Seabed/topographic surface vertical displacement evaluation

Outer North Sea - Moray Firth site

North Denmark - Vedsted site

Key learnings from the SiteChar experience

- Fault behaviour is a key element for the site characterisation/risk assessment
 - Lack of proper data
 - Simulations of different scenarios allow to evaluate fault impact deriving by their geometry and property uncertainties.
- Close collaboration between teams during all phases of the project:
 - purpose of the models;
 - software/format compatibility must be assured;
 - model extent and resolution;
- Interplay between regional and site scale model allows to assess pressure development outside the storage site to define the boundary conditions

Remaining issues

Availability of proper data

- reservoir heterogeneity;
- information on fault properties;
- overburden properties;
- initial stress conditions (pre-injection stress state).

Geomechanical and fluid dynamic simulations

- Compatible geological models for geomechanics (faults) and fluid flow still requiring a lot of efforts;
- model exchange/interaction among different site characterisation activities;
- coupling strategy.

Characterisation of earth movement to define safety margins of operation

Close cooperation between teams/disciplines

- Very close interaction between the static geological modelling, dynamic flow modelling and coupled flow and geomechanical modelling should be planned for the site characterisation work schedule.
- Compatibility and interoperability among used softwares should be tested at the outset of the characterisation process.

Sensitivity analysis

simulations of worst and best case scenarios might be a practical way to address lack of proper data.

Many thanks to

the European Union, ENEL, PGNiG, STATOIL, Vattenfall, Veolia Environnement, Gassnova and Scottish Government

for participating and funding the project

