

Characterisation of European CO₂ storage Estimating the storage capacity: the first but still challenging step

Ane Lothe and Per Bergmo

Objectives

- Secure sufficient storage capacity
- Evaluate containment security
 - Retention time: tens of thousands of years
 - Evaluate possibilities for failure and leakage
 - Evaluate integrity of old wells
 - Estimate trapping mechanisms (solubility, capillary, mineralisation)
- Evaluate migration path ways for injected CO₂

Challenges

- Each storage site is unique!!!
- Often a challenge with *little data* available
 - How to construct a 3D model e.g. facies distribution?
 - How detailed should your fault interpretation be?
 - Up-scaling from wells to basin scale
- Could it be simplified without reducing the quality?
 - Heterogeneities can be very important... (pressure communication/injectivity/dissolution rate)
- Need good interpretation of the top reservoir layer to get the lateral migration of CO₂ correct

The outer Moray Firth

- CO₂ storage in a depleted oil field
- The dynamic capacity, calculated by simulation of CO₂ injection into the Blake Field Channel facies and water production down-dip from within the saline aquifer, accommodates 100 Mt injected over 20 years.

Primary containment: Gassum Fm. with the Fjerritslev Fm acting as seal. Secondary containment: Haldager Fm. with the Boerglum Fm. acting as seal

Poland

Figure 29: The top of basal Zechstein Carbonates Ca1 - Zuchlow

• Onshore depleted gas field

The estimated total storage capacity of both sites is about 230 Mt of CO_2 , *i.e.*,123.6 Mt at Żuchlów and 106.6 Mt at Załęcze).

Trøndelag Platform – Using basin modelling approach
 Migration route – with open or sealing faults

Trøndelag Platform – Reservoir model High and low permeability

Low permeability (500mD)

High permeability (2000 mD)

Effective porosity difficult to measure – need modelling

Key learnings from the SiteChar experience

- Every site is <u>unique</u>
- Level of detail in models is dependent on available data
- Models are important to predict the storage capacity and visualise the CO₂ behaviour

New data is always welcome to improve the models

- The better data that is available, the better models can be contrained
- Size and resolution of the model should fit with the resolution of the available data
- Possible software incompatibility induces difficulties in defining a data exchange format. This requires a close interaction between geologists and engineers from the beginning of the project

Many thanks to

the European Union, ENEL, PGNiG, STATOIL, Vattenfall, Veolia Environnement, Gassnova and Scottish Government

for participating and funding the project

