

Characterisation of European CO₂ storage

Dry-run storage permit applications
Lessons learned from the perspective of
operators and regulators

Jonathan Pearce...

ite har

Motivation

- To date, one application has been made for a storage permit under the Storage Directive
- Demonstration projects are working towards submitting permits
 - But are not yet ready
 - Regulators may not able to receive applications in some MS
- Permit development needs to be tested at credible sites
 - 'Low' risk dry-run environment without the constraints of commercial projects
 - Allow testing of permitting in future storage situations (onshore and in saline aquifers)
 - Allow testing and refinement of the SiteChar workflow

Scope of licence applications

- Two teams have produced credible, if limited, licence applications with 'research-level' resources
 - Detailed permit applications are not produced
 - Includes most of key elements required by the Storage Directive
 - Key issues that should be addressed are identified.
- Based on existing data
 - No additional exploration, injections tests or core analysis has been undertaken
- Out of scope:
 - Full EIA
 - Provision relating to the acceptance and injection of CO₂
 - Details of financial security
 - A provisional post-closure plan
 - Provisions for reporting

	Storage Permit Application content	Interim March 2012	Final June 2013	har
1.	Name and address of proposed operator	✓		* * * * * * * * * * * * * * * * * * * *
2.	Appraisal term	✓		
3.	Project description i. Injection parameters and project concept ii. Storage development plan incl. Injection & Operating plan Storage Performance Forecast	✓	✓ ✓ ✓	
4.	Site description i. Boundaries ii. Site geology, hydrogeology iii. Past development history iv. Storage capacity estimate	✓ ✓ ✓ Draft	C	Site haracterisation
5.	Measures to prevent significant irregularities i. Risk register ii. Plan of risk mitigation iii. Dialogue with stakeholders	√ Draft Draft	√ √ √	Risk Assessment
6.	Monitoring plan		✓	
7.	Corrective measures plan i. Key Performance Indicators ii. Corrective measures plan (provisional)	✓	✓	Key
8.	Post-closure plan i. Key Performance Indicators ii. Post-closure plan (provisional)	√	√	Performance Indicators
	Environmental Impact Assessment i. Description of relevant features har Storage permit dry-runs	✓	V	www.sitechar-co2.eu

Process

- Interim permit applications produced and reviewed
- Highlighted topics that formed the basis of discussions with:
 - Regulatory Advisory Board:
 - Owain Tucker, Shell
 - Franz May, BGR
 - Greg Leamon and Steve Tantala, RET, Australia Govt
 - Steve Cawley, BP
- Workshops were held with storage regulators from France, UK (& policy makers), Germany, Netherlands and Norway, with industry representatives including the RAB and others.
- Final permits submitted and reviewed internally and in detail by RAB.

Comparisons between Vedsted and Moray Firth – permitting perspective

Moray Firth

- Offshore
- Identified from previous regional reviews of UK northern North Sea storage targets
- 'Theoretical' study
 - Low risk can try different permitting scenarios
 - No acquisition of new data
 - Range of injection scenarios
- Risks addressed in SiteChar:
 - Definition of storage complex
 - Caprock integrity
 - Potential for seismic monitoring

Vedsted

- Onshore
- Previously applied for licence prior to Directive to promote dialogue with Regulators
- Real project, now stopped
 - Application fits predefined concept& original licence application
 - Baseline monitoring data acquired
- Risks addressed in SiteChar :
 - Oil well integrity and abandonment status
 - Regional pressure responses and management

SiteChar: Dry-run permit development and review CONCLUSIONS

Comparisons between Vedsted and Moray Firth – permitting perspective

Vedsted

- Risks being addressed in SiteChar:
 - Oil well integrity and abandonment status
 - Potential effects of regional pressure responses and the potential to manage these by water production

Moray Firth

- Risks being addressed in SiteChar:
 - Definition of site and complex boundaries
 - Well integrity
 - Caprock integrity
 - Potential for seismic monitoring and minimum detection limits

www.sitechar-co2.eu

ite har v har

Site Characterisation

- Site characterisation should be driven by risk assessment process to:
 - Identify and reduce priority uncertainty,
 - Enable project design
 - Develop monitoring plans and performance metrics.
- Both projects consider an injection test would be needed.
 - To assess proof on injectivity, reservoir connectivity and pressure response.

Storage Complex Boundary

- Informal discussion with regulators indicate that the pressure footprint might receive lower emphasis in defining the complex boundary.
- Including the pressure footprint would require impractically large storage permit areas, since pressure responses can extend far beyond the plume.
- There is little consensus on the thresholds or consequences above which effects should be included.
- A clear and prior agreement with CA will be needed on definition of storage complex
- In SiteChar we propose that the complex defined by maximum extent of plume
 - including CO₂-saturated formation water
 - plus a margin to enable monitoring
 - to reflect inherent uncertainty in predictions

Interactions with other users

- The nature and extent of interactions with other users is a key consideration for regulators.
- Operators are expected to establish potential impacts on pre-existing users of surface and subsurface
- Assessing future interactions may be challenging for operators
 - E.g. future operations (HC production and/or other storage) may impact on the risk profile of a project.
 - The 'state owner of the resource' may be best placed to take an overview

Pressure management & water disposal

- Disposal of water offshore is not considered particularly challenging, as it is widely practised in HC production.
- Volumes of produced water for pressure management in the North Sea have not been estimated.
 - For comparison, 175 million m³ of produced water were discharged in UK waters in 2011
 - Moray Firth estimated similar volumes produced as CO₂ injected
- At Vedsted, pressure management was considered, since pressures were limited to 85% of lithostatic.
- Disposal of produced waters may be significantly more challenging onshore than offshore,
 - A key topic in the storage and environmental permits for onshore sites.

har to the second seco

Permit performance conditions (PPCs)

- Define limits to site behaviour which, if exceeded, indicate that a significant irregularity or leakage has occurred.
 - Identified through Risk Assessment
 - Inform the Monitoring Plan
 - Trigger Corrective Measures if exceeded
 - Indicators will be in the Corrective Measures and Post-Closure plans
 - Enable site closure

Blake Field	
PPC1	Environmental or human health will not be adversely affected by the storage operation
	Storage operation
PPC2	CO ₂ will not pass beyond the Storage Permit Area boundaries
PPC3	CO ₂ plume shows migration within expected modelled behaviour
PPC4	Pressure changes will remain within predefined/predicted ranges
PPC5	Geomechanical integrity of site will be maintained
PPC6	Cost per tonne will remain within a set limit

Recommendations on PPCs

- PPCs should be linked to the specific risks they address
 - To demonstrate that the risk register, PPCs, corrective measures plan and monitoring plan are closely integrated.
- PPCs should be written with positive phrasing as the permits will be public documents.

Flexibility in the storage permit

- Conditions under which permits should be changed (to reflect changes in operation) should be agreed.
 - This would not be predictions of alternative scenarios and open permits but rather the circumstances under which permits might need to be changed.
 - Provide a 'master' storage permit with additional permits for specific activities such as drilling wells

Post-injection period

- SiteChar permits have 20-year post-injection periods
- If sites are performing as expected, operators likely to wish to transfer responsibility as soon as possible.
 - Both sites predict (albeit with limited simulations) reaching safe steady-states quickly.
- Any uncertainty in conditions for site closure may delay FID.
- Crucial to agree, during permit negotiations, exact evidence required to enable site closure and transfer of responsibility.
 - Challenging due to multiple CAs involved.

Communication and management of uncertainty

- Uncertainty and hazard should be distinguished
- Site characterisation will always be associated with a degree of uncertainty.
 - How much is acceptable?
- Assessment by scenario development
- Focus on assessing uncertainty related to parameters which significantly impact capacity and containment.
- Reducing uncertainty will be iterative, requiring a focus on reducing areas of most significance incrementally.

Communication and management of uncertainty

- Site characterisation may indicate that one geological model interpretation is more likely than others
 - This will form the basis of the permit application.
- However other interpretations might be possible and should be discussed.
- Contingencies should be included in the application.
- The operator and the CA will need to agree on acceptable levels of uncertainty and the evidence needed to support the permit application

Competent authorities

- Reviews of history matching between observation and predictions should be undertaken throughout the project.
 - May require specialist technical advice to support this.
- It is currently assumed all sites will be closed and infrastructure removed.
 - It may be beneficial for some sites to be kept open. CA may wish to extend storage life.
- Data archiving requirements should be applied to hydrocarbon licence holders for benefit of storage site characterisation.
- The CA(s) may need to undertake its own risk assessment and supporting investigations, to provide guidance to operators, including around third party access.

Competent authorities - questions

- Over what periods should predictions of post-closure performance be undertaken?
 - 500-1000 years in SiteChar
- Under what conditions could other users challenge a storage permit application?
- Definition of storage complex
- How storage should be managed in areas of multiple storage operations

Feedback for Storage Directive

- Detailed guidance on defining complex boundaries
- The extent to which impacts from pressure should be included
- PPCs are useful tools for discussion between the CA and operator
 - to define and agree acceptance criteria against which a storage operation can be assessed.
 - Likely to be a combination of qualitative and quantitative metrics.
- Conditions under which permits might need to be changed

har * Care

Summary

- Site characterisation undertaken at varying levels on credible storage sites.
- Estimated 2-5 years with up to 200 person months of effort for storage permit applications
 - CAs will need significant resources and expertise to assess applications and during operation.
 - Several CAs likely to be involved.
- Dry-run permitting process has identified approaches to demonstrating safe and permanent CO₂ storage.
- Recommendations arising from the dry-run process provide guidance to operators and regulators on site characterisation and the SiteChar workflow.

Acknowledgments

Many thanks to the European Union, ENEL, PGNiG, STATOIL, Vattenfall, Veolia Environnement, Gassnova and Scottish Government for participating and funding the project

www.sitechar-co2.eu