

Characterisation of European CO₂ storage Closing conference

F. Delprat-Jannaud

www.sitechar-co2.eu

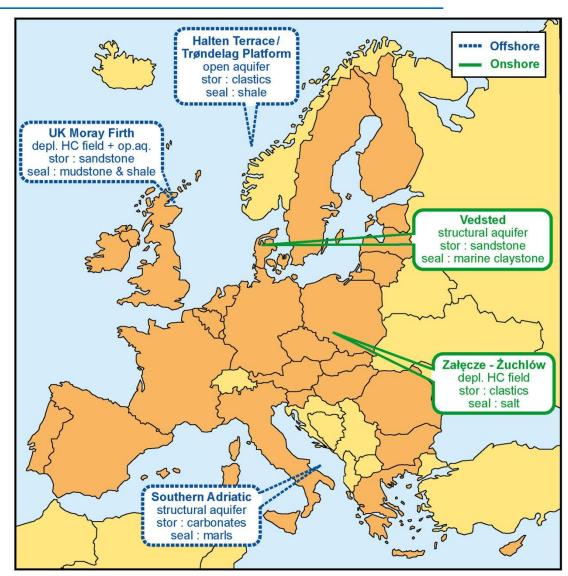
SiteChar – Closing Conference, 28 November 2013, IFPEN (France)

The European Union, ENEL, PGNiG, STATOIL, Vattenfall, Veolia Environnement, Gassnova and Scottish Government for participating and funding the project

www.sitechar-co2.eu

With contributions from

AGH: Lukasz Klimkowski, Stanislaw Nagy, Bartosz Papiernik **ECN**: Suzanne Bunsting, Jessanne Mastop **ENEL:** Silvana Iacobellis, Monia Politi **GEUS:** Peter Frykman, Carsten Nielsen **GFZ**: Thomas Kempla, Juliane Kummerov IFPEN: Axelle Baroni, Samir Békri, Dan Bossie-Codreaau, Florence Delprat-Jannaud, Brigitte Doligez, Audrey Estublier, Jean-François Gruson, Emmanuelle Hutin, Jean-Claude Lecomte, Stéphane Renard, Jean-Marc Richard, Sylvain Serbutoviez, Olivier Vincké Imperial: Sevket Durucan, Anna Korre, Ji-Quan Shi, Amer Syed **BGS**: Maxine Akhurst, Sarah Hannis, Gary Kirby, David Long, Mike McCormac, Jonathan Pearce, Martyn Quinn OGS: Edy Forlin, Davide Gei, Barbara Merson, Sergio Persoglia, Valentina Volpi **PGNiG:** Marcin Mazurowski Scottish Government: Fiona Hepplewhite, Stuart McKay, Howard Steele, Linsey Wilson SINTEF-PR: Per Bergmo, Ane Lothe, Etor Querendez, Joachim Rinna Statoil: Bjorn Berger **TNO**: Orlic Bogdan, Filip Neele, Maarten Pluymaekers, Ton Wildenborg UfU: Marta Kaiser, René Zimmer UniRoma1-CERI: Stanley Beaubien, Salvatore Lombardi, Samuela Vercelli Vattenfall: Finn Dalhoff


Provide the key steps required to make on-time effective large-scale implementation of CO₂ storage in Europe

- Demonstrate the level of geological characterisation and the assessment of long-term storage complex behaviour in accordance with the regulatory requirements (EU Directive)
- Develop a methodology for the preparation of storage permit applications, accounting for all the technical and economic data, as well as the social dimension
- Raise public awareness and enable informed opinion formation

The SiteChar sites portfolio

- Representative EU sites providing credible options for CO₂ storage
- Allowing to test and improve the SiteChar methodology for site characterisation in different geological contexts

Two sites to perform a full-chain characterisation suitable for a storage permit application

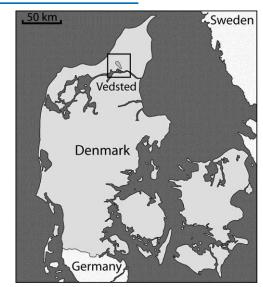
The northern North Sea site, UK

A multi-store site, comprising

A hydrocarbon field: near-term storage capability

The host saline aquifer sandstone: greater storage potential, later in the storage cycle

Characterisation of a multi-store site sufficient for submission of a 'dry-run' permit application to the Scottish Government


> All components of a permit application developed as far as possible

Design of injection strategy for pressure management

Investigation of the relationship between a producing hydrocarbon field and the host saline aquifer Two sites to perform a full-chain characterisation suitable for a storage permit application

The Vedsted site, Denmark

An onshore saline aquifer processed by Vattenfall till late 2011 to be an industrial scale CCS demo project

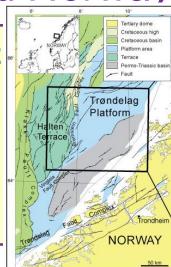
As complete as possible techno-economic assessment to reach readiness for storage permit

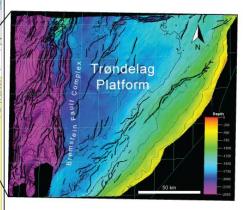
- Incremental development proposed to supplement sparse data
- Special emphasis on the monitoring program to investigate the impact of CO₂ injection on the surrounding region and design the best risk management

Three sites to overcome specific barriers related to the site characterisation methodology

An onshore gas reservoir,

representative of a series of natural gas reservoirs in the Polish Lowland with CO₂ storage potential

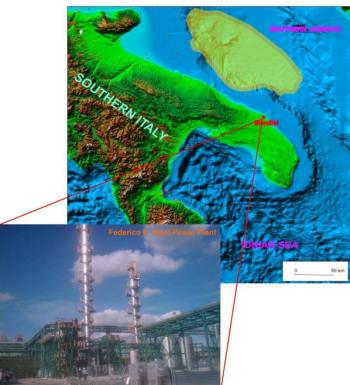



- Application of the whole workflow from the first stages through to the development of an injection strategy
- Investigation of the behaviour of the reservoir rock and the caprock during CO₂ injection by laboratory experiments and numerical simulations
- Well integrity analysis and related risk assessment, monotoring and remediation plans

Three sites to overcome specific barriers related to the site characterisation methodology

The Trøndelag platform, Mid Norway

An offshore multi-compartment saline aquifer presenting possible storage sites in saline formations and dry structures


- Virgin area characterised on the basis of public data
- Basin to individual CO₂ storage compartment assessment
- Comparison of different modelling approaches to simulate injection strategy with emphasis on storage capacity optimisation
- Monitoring and remediation strategies

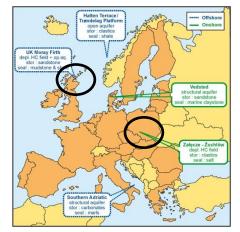
Three sites to overcome specific barriers related to the site characterisation methodology Site location

The South Adriatic site, Italy

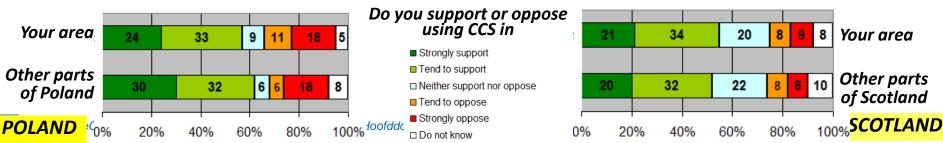
A structural trap in a offshore carbonate saline aquifer, located in a relatively stable area

Qualitative assessment of the southern Adriatic offshore area for CO₂ geological storage based on public data

Simulation of the geomechanical and dynamic behaviour of the storage complex due to the CO₂ injection


Social site characterisation & advancing public awareness

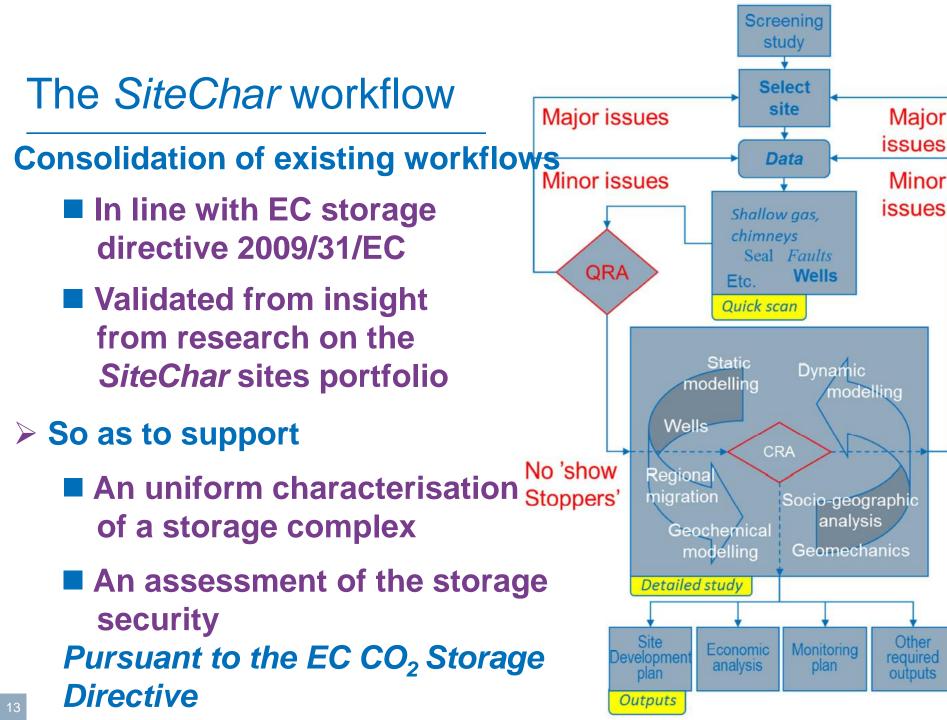
- Raising public awareness and enabling informed opinion formation
- Making available and comprehensive site-specific information


On two sites

- The offshore Scottish site
- The onshore Polish site

Fieldwork from early 2011 to mid-2012

ar



The SiteChar techno-economic analysis

Address the storage part on the full-life time of the storage All CAPEX and OPEX to be mobilized over the project life

	UK North Sea	Vedsted	Trøndelag Platf.	South Adriatic
	UK	Denmark	Norway	Italy
Context	Offshore	Onshore	Offshore	Offshore
Reservoir type	Depl. HC field & Deep Saline Aquifer	Deep Saline Aquifer	Deep Saline Aquifer	Deep Saline Aquifer
Injection/Project life (y)	20 / 40	40 / 70	40 / 70	10 / 40
CO ₂ stored (Mt) / Rate (Mt/y)	100 / 5	60 / 1.5	40 / 1	10 / 1
Nb. Inject. / Product. wells	5 / 1	1 / 0	1 / 0	1 / 0
Estimated costs	599 M€ / 11.4 €/ t	29 M€ / 3.2 €/t	159 M€ / 26.6 €/t	97 M€ / 28.8 €/t
Share of estimated costs Site Exploration Site development CO2 injection Monitoring Contingencies and Abandonment	5%	10% 35% % 0% 21%	24% 4% 1% 19%	18% 8% 3% 26%

- No meaningful average cost for CO₂ storage
 Very heterogeneous structure of costs
 Site/Project dependent
 - Choice of economic parameters

	UK North Sea	Vedsted	Załęcze- Zuchlów	Trøndelag Platform	Grazia
	North Sea UK	Denmark	Poland	Norway	Italy
Geology	Offshore	Onshore	Onshore	Offshore	Offshore
	Depl. oil reserv. & Host sal. Aqu.	Saline aquifer	Depleted oil reservoir	Saline aquifer	Saline aquifer
Reservoir	Sandstone	Sandstone	Clastics	Clastics	Carbonates
Seal	Mudstone/Shale	Marine clayst.	Salt	Shale	Marls
Main	H.C. fields & host	Ways to	Whole workflow	Basin &	Characterisation
objectives	saline aquifer	supplement	through to the	compartment	of carbonate Fm
	relationship	sparse data	development of	scale evaluation	Geomechanical
	Risk-led site	Impact on	an injection		behaviour
	characterisation	surroundings	strategy		
Step of the	workflow address	sed			
1- Risk ass	essment 🗸	\checkmark		\checkmark	
2- Static m	odelling 🖌 🗸	\checkmark	\checkmark	\checkmark	\checkmark
3- Dynamic	c mod. 🖌 🗸	\checkmark	\checkmark	\checkmark	\checkmark
4- Geomeo	hanical mod. 🗸		\checkmark		
5- Geochei	mical mod. 🛛 🗸	\checkmark	\checkmark		
6- Well inte	egrity 🗸	\checkmark	\checkmark		
7- Migratio	n path 🖌 🗸			\checkmark	
8- Monitori	ng 🗸	\checkmark		\checkmark	
9- Social a	ccept 🗸		\checkmark		
10-Econom	ic eval. 🗸	\checkmark		\checkmark	\checkmark
14 - Regul. c	ompliance 🗸	\checkmark			

Afternoon session

The SiteChar workflow for integrated and accountable site characterisation

ffe

14:00-14:20	F. Neele	The SiteChar workflow to answer the requirement of characterization	<u>Chair</u> F. Delprat-
14:20-14:40	A. Lothe	Estimating the storage capacity: the first but still challenging step	Jannaud
14:40-15:00	V. Volpi	Evaluating the storage geomechanical stability	
15:00-15:20	S. Nagy	Assessing the well integrity	
15:20-15:40	Break / Poster :	session	
15:40-16:00	S. Brunsting	Public engagement activities to inform	<u>Chair</u>
		development of a storage permit	J. Pearce
	Panel of experts W. Hull V. Kougionas O. Tucker D. Taylor C. Skriung	How to prioritise risk reduction and balance characterisation with costs? How to define an effective cost-reduction strategy? Role of operators and state authorities in supporting site characterisation? How to get a 'social ticket to ride'?	<u>Moderator</u> J. Pearce
17:00-17:15	F. Delprat-J. F. Kalaydjian	Key learning of the projects / Next steps required for the deployment of CCS	

17:10-18:30 Poster session / Cocktail

Site characterisation in the purpose of a storage permit


Demonstrate understanding of the site for a CO₂ storage

Convince Competent Authority that

- Permit applicant has sufficient understanding of the site
- Proposed site operation will securely contain CO₂

Comply with regulatory issues

- Develop dry-run permit applications and undertake independent reviews of these applications
 - Identify the best approaches to site characterisation to enable robust and defensible permit applications to be developed by operators
 - Help regulatory authorities to identify the necessary levels of evidence required to assess safety, containment and capacity

Two contrasting storage sites

UK North Sea

- Offshore
- Hydrocarbon field within the host saline aquifer
- Identified from previous regional reviews of UK northern North Sea storage targets
- 'Theoretical' study

Sufficient publicly available data

Vedsted

- Onshore
- Saline aquifer
- Previously applied for permit prior to Directive to promote dialogue with Regulators
- Real project, now stopped
- Sparse data

But a common approach

→ A fit for purpose characterisation driven by risk assessment

Key learning's and technical recommendations for storage site characterisation

Best practice guidance for storage permitting from the perspective of both applicant and regulator

For further use by storage site operators and regulatory bodies

www.sitechar-co2.eu

Morning session

Site characterisation for storage permitting

8:30-8:50	F. Kalaydjian	Welcome address	
8:50-9:20	F. Delprat-	The SiteChar project	<u>Chair</u>
	Jannaud		H. Pagnier
9:20-9:30	S. Mc Kay	Statement of Support from the Scottish	
		Government	
9:30-10:00	M. Akhurst	Developing a storage permit:	
		A risk assessment led characterisation	
10:00-10:30	C. Nielsen	Developing a storage permit for an onshore	
		aquifer	
10:30-10:50	Break / Poster	session	
11:50-11:20	J. Pearce	Dry-run storage permit applications	<u>Chair</u>
		Lessons learned from the perspective of	F. Kalaydjian
		operators and regulators	
11:20-12:20	Panel of experts	What is good enough to gain a storage permit?	<u>Moderator</u>
	L. Perrette	What issues regarding storage permits still require	F. Kalaydjian
	A. Kneppers	clarity from the regulatory perspective?	
	H. Hoyadalsvik	Which criteria to assess long-term security and support liability transfer?	
	F. Dalhoff		
	Rune Thorsen		

